4 research outputs found

    Culture-free genome-wide locus sequence typing (GLST) provides new perspectives on Trypanosoma cruzi dispersal and infection complexity.

    Get PDF
    Analysis of genetic polymorphism is a powerful tool for epidemiological surveillance and research. Powerful inference from pathogen genetic variation, however, is often restrained by limited access to representative target DNA, especially in the study of obligate parasitic species for which ex vivo culture is resource-intensive or bias-prone. Modern sequence capture methods enable pathogen genetic variation to be analyzed directly from host/vector material but are often too complex and expensive for resource-poor settings where infectious diseases prevail. This study proposes a simple, cost-effective 'genome-wide locus sequence typing' (GLST) tool based on massive parallel amplification of information hotspots throughout the target pathogen genome. The multiplexed polymerase chain reaction amplifies hundreds of different, user-defined genetic targets in a single reaction tube, and subsequent agarose gel-based clean-up and barcoding completes library preparation at under 4 USD per sample. Our study generates a flexible GLST primer panel design workflow for Trypanosoma cruzi, the parasitic agent of Chagas disease. We successfully apply our 203-target GLST panel to direct, culture-free metagenomic extracts from triatomine vectors containing a minimum of 3.69 pg/μl T. cruzi DNA and further elaborate on method performance by sequencing GLST libraries from T. cruzi reference clones representing discrete typing units (DTUs) TcI, TcIII, TcIV, TcV and TcVI. The 780 SNP sites we identify in the sample set repeatably distinguish parasites infecting sympatric vectors and detect correlations between genetic and geographic distances at regional (< 150 km) as well as continental scales. The markers also clearly separate TcI, TcIII, TcIV and TcV + TcVI and appear to distinguish multiclonal infections within TcI. We discuss the advantages, limitations and prospects of our method across a spectrum of epidemiological research

    Genetic diversity of the Trypanosoma cruzi and Trypanosoma rangeli mini-exon gene in two localities of Southern Ecuador

    No full text
    Trypanosoma cruzi, causative agent of Chagas Disease, and Trypanosoma 25 rangeli, are both protozoan parasites endemic to Latin America, including Ecuador. 26 T. cruzi shows high molecular and morphological heterogeneity and six lineages or 27 DTU’s are currently recognized. In Ecuador, TcI predominates while zymodeme III, 28 corresponding to what is currently TcIV, was previously reported by a single study. 29 T. rangeli, although nonpathogenic to humans, is a species of interest due to its 30 sympatric distribution with T. cruzi and confounding effect in Chagas Disease 31 diagnosis. In the present study, we isolated DNA of intestinal contents of triatomines 32 belonging to two communities of Southern Ecuador. Infection status determined by 33 kinetoplast-minicircle PCR was contrasted with results yielded by PCR amplification 34 of the non-transcribed region of the mini-exon gene. For disambiguation of the 35 results obtained, amplified fragments from the non-transcribed region of the mini-36 exon gene were sequenced using an Illumina MiSeq platform. We evaluated genetic 37 variability in terms of richness and diversity at a population level for both parasites 38 using Operational Taxonomic Units. T. cruzi genetic diversity was found to be 39 significantly larger in adult female vectors as compared to the nymphal stages. 40 Additionally, NGS revealed 21 mixed infections between TcI and T. rangeli, and the 41 presence of DTU TcIV in 7 samples, (a novel record in Southern Ecuador), which 42 the PCR-based methods were not able to detect. This suggests that the PCR-based 43 methods are not reliable as molecular tools for identification of mixed infections. 44 Furthermore, parasite populations present in only one of the two studied localities 45 were not found, suggesting active parasite dispersal over the study area. Our results highlight the value of NGS methodologies to clarify the population dynamics of 47 triatomines and inform control strategies

    Remarkable genetic diversity of Trypanosoma cruzi and Trypanosoma rangeli in two localities of southern Ecuador identified via deep sequencing of mini-exon gene amplicons

    No full text
    © 2020 The Author(s). Background: Trypanosoma cruzi, the causative agent of Chagas disease, and T. rangeli are kinetoplastid parasites endemic to Latin America. Although closely related to T. cruzi and capable of infecting humans, T. rangeli is non-pathogenic. Both parasite species are transmitted by triatomine bugs, and the presence of T. rangeli constitutes a confounding factor in the study of Chagas disease prevalence and transmission dynamics. Trypanosoma cruzi possesses high molecular heterogeneity: seven discrete typing units (DTUs) are currently recognized. In Ecuador, T. cruzi TcI and T. rangeli KP1(-) predominate, while other genetic lineages are seldom reported. Methods: Infection by T. cruzi and/or T. rangeli in different developmental stages of triatomine bugs from two communities of southern Ecuador was evaluated via polymerase chain reaction product size polymorphism of kinetoplast minicircle sequences and the non-transcribed spacer region of the mini-exon gene (n = 48). Forty-three mini-exon amplicons were also deep sequenced to analyze single-nucleotide polymorphisms within single and mixed infections. Mini-exon products from ten monoclonal reference strains were included as controls. Results: Trypanosoma cruzi genetic richness and diversity was not significantly greater in adult vectors than in nymphal stages III and V. In contrast, instar V individuals showed significantly higher T. rangeli richness when compared with other developmental stages. Among infected triatomines, deep sequencing revealed one T. rangeli infection (3%), 8 T. cruzi infections (23.5%) and 25 T. cruzi + T. rangeli co-infections (73.5%), suggesting that T. rangeli prevalence has been largely underestimated in the region. Furthermore, deep sequencing detected TcIV sequences in nine samples; this DTU had not previously been reported in Loja Province. Conclusions: Our data indicate that deep sequencing allows for better parasite identification/typing than amplicon size analysis alone for mixed infections containing both T. cruzi and T. rangeli, or when multiple T. cruzi DTUs are present. Additionally, our analysis showed extensive overlap among the parasite populations present in the two studied localities (c.28 km apart), suggesting active parasite dispersal over the study area. Our results highlight the value of amplicon sequencing methodologies to clarify the population dynamics of kinetoplastid parasites in endemic regions and inform control campaigns in southern Ecuador.[Figure not available: see fulltext.

    Culture-free genome-wide locus sequence typing (GLST) provides new perspectives on Trypanosoma cruzi dispersal and infection complexity

    No full text
    El análisis del polimorfismo genético es una poderosa herramienta para la vigilancia epidemiológica y investigar. Sin embargo, la inferencia poderosa de la variación genética del patógeno es a menudo restringido por el acceso limitado al ADN objetivo representativo, especialmente en el estudio de especies parásitas obligadas para las cuales el cultivo ex vivo requiere muchos recursos o es propenso a sesgos. Los métodos modernos de captura de secuencias permiten analizar directamente la variación genética de los patógenos del material del huésped/vector, pero a menudo son demasiado complejos y costosos para entornos de escasos recursos donde prevalecen las enfermedades infecciosas. Este estudio propone un método sencillo y rentable Herramienta de tipificación de secuencias de locus de todo el genoma (GLST) basada en la amplificación paralela masiva de puntos críticos de información en todo el genoma del patógeno objetivo. el multiplexado La reacción en cadena de la polimerasa amplifica cientos de objetivos genéticos diferentes definidos por el usuario en un único tubo de reacción y la posterior limpieza basada en gel de agarosa y código de barras completan la preparación de la biblioteca por menos de 4 USD por muestra. Nuestro estudio genera un modelo flexible Flujo de trabajo de diseño de panel de imprimación GLST para Trypanosoma cruzi, el agente parásito de Chagas enfermedad. Aplicamos con éxito nuestro panel GLST de 203 objetivos a extractos nómicos metagénicos directos y sin cultivo de vectores triatominos que contienen un mínimo de 3,69 pg/μl de ADN de T. cruzi y elaborar más sobre el rendimiento del método mediante la secuenciación de bibliotecas GLST de T. cruzi clones de referencia que representan unidades de tipificación discretas (DTU) TcI, TcIII, TcIV, TcV y TcVI. Los 780 sitios SNP que identificamos en el conjunto de muestras distinguen parásitos de forma repetitiva infectar vectores simpátricos y detectar correlaciones entre distancias genéticas y geográficas a escala regional (< 150 km), así como continental. Los marcadores también separan claramente TcI, TcIII, TcIV y TcV + TcVI y parecen distinguir infecciones multiclonales dentro de TcI. Discutimos las ventajas, limitaciones y perspectivas de nuestro método a través de un espectro de la investigación epidemiológica.Analysis of genetic polymorphism is a powerful tool for epidemiological surveillance and research. Powerful inference from pathogen genetic variation, however, is often restrained by limited access to representative target DNA, especially in the study of obli gate parasitic species for which ex vivo culture is resource-intensive or bias-prone. Mod ern sequence capture methods enable pathogen genetic variation to be analyzed directly from host/vector material but are often too complex and expensive for resource-poor set tings where infectious diseases prevail. This study proposes a simple, cost-effective ‘genome-wide locus sequence typing’ (GLST) tool based on massive parallel amplifica tion of information hotspots throughout the target pathogen genome. The multiplexed polymerase chain reaction amplifies hundreds of different, user-defined genetic targets in a single reaction tube, and subsequent agarose gel-based clean-up and barcoding com pletes library preparation at under 4 USD per sample. Our study generates a flexible GLST primer panel design workflow for Trypanosoma cruzi, the parasitic agent of Chagas disease. We successfully apply our 203-target GLST panel to direct, culture-free metage nomic extracts from triatomine vectors containing a minimum of 3.69 pg/μl T. cruzi DNA and further elaborate on method performance by sequencing GLST libraries from T. cruzi reference clones representing discrete typing units (DTUs) TcI, TcIII, TcIV, TcV and TcVI. The 780 SNP sites we identify in the sample set repeatably distinguish parasites infecting sympatric vectors and detect correlations between genetic and geographic dis tances at regional (< 150 km) as well as continental scales. The markers also clearly sep arate TcI, TcIII, TcIV and TcV + TcVI and appear to distinguish multiclonal infections within TcI. We discuss the advantages, limitations and prospects of our method across a spectrum of epidemiological research
    corecore